Physics Students' Familiarity with Mathematical Facts and Procedures

David E. Meltzer and Dakota H. King Arizona State University

Supported in part by NSF DUE \#1504986

The Problem

- College physics instructors often report deficiencies in introductory students' mathematical skills
- Weak skills with basic pre-college mathematics can severely impact physics students' course performance
- We have explored the nature and prevalence of physics students' difficulties with elementary mathematics, using "stripped-down" problems with little or no physics context

Work to Date

- Administer (and analyze) written diagnostic quiz, given to >4000 students in ≈ 30 algebra- and calculus-based physics classes over seven semesters at Arizona State University during 2016-2019; calculators are allowed
- Carry out individual interviews with 75 students enrolled in those or similar courses during same period (Primary interviewer: Matt Jones)
- Topics: trigonometry, algebra, vectors, graphing, geometry

Diagnostic Questions

with samples of correct student responses

What is the value of x ?

What is the value of θ ?

What is the slope of the graph below?

[Some physics content]

$$
\begin{aligned}
& c y=d x \\
& a-y=b x \\
& x=?
\end{aligned}
$$

$$
\begin{array}{ll}
c y=d x & \\
a-y=b x & y=a-b x \\
& c(a-b x)=d x \\
x=? & c a-c b x=d x \\
& c a=(c b+d) x
\end{array}
$$

$$
x=\frac{c a}{c b+d}
$$

Our 4 Sample Populations

PHY 111: Algebra- based; $1^{\text {st }}$ semester	PHY 112: Algebra- based; $2^{\text {nd }}$ semester	PHY 121: Calculus- based; $1^{\text {st }}$ semester	PHY 131: Calculus- based; $2^{\text {nd }}$ semester

Our 8 Sample Populations

Our 8 Sample Populations

On average, students in the Tempe courses have more extensive background and preparation than those in the corresponding Poly courses.

Our 8 Sample Populations

Our 16 Sample Populations

Our 16 Sample Populations

Each of the 16 sample populations has distinct and consistent differences from all of the others!

Our 16 Sample Populations

Our data-collection period (2016-19) included 4 spring semesters and 3 fall semesters, and several of the 16 populations were only sampled once or twice, some with low N. So, even with total $N>$ 4000, confirmation of consistent patterns is challenging.

Primary Findings

Regardless of course (algebra- or calculus-based), campus (Tempe or Poly), or semester (Spring or Fall):

- Difficulties with basic mathematical operations are widespread; average error rates range from 20-70\%;
- Performance on problems using symbols for constants is significantly worse than on problems using numbers;
- During problem-solving interviews, students self-correct approximately 50% of errors following minimal prompts;

Primary Findings

Regardless of course (algebra- or calculus-based),
campus (Tempe or Poly), or semester (Spring or Fall):

- Difficulties with basic mathematical operations are widespread; average error rates range from 20-70\%;
\square significantly worse than on problems using numbers; During problem-solving interviews, students self-correct approximately 50% of errors following minimal prompts;

$$
\begin{aligned}
& \cos 60=\frac{10}{x} \\
& x \cos 60=10 \\
& x=\frac{10}{\cos 60}=20
\end{aligned}
$$

Correct Response Rate, Poly; Fall 2016

Algebra-based course, first semester: $47 \%(N=94)$ Calculus-based course, first semester: $44 \%(N=98)$

What is the value of θ ?

Correct Response Rate, Tempe; Fall 2018
Algebra-based course, first semester: 50\% ($N=308$) Calculus-based course, first semester: 79\% ($N=330$)

What is the slope of the graph below?

Position (m)

Correct Response Rate, Tempe; Fall 2018
Algebra-based course, first semester: $43 \%(N=305)$
Calculus-based course, first semester: $56 \%(N=329)$

$$
\begin{aligned}
& c y=d x \\
& a-y=b x \\
& x=?
\end{aligned}
$$

Correct Response Rate, Tempe; Spring 2018
Algebra-based course, first semester: $36 \%(N=140)$
Calculus-based course, first semester: $63 \%(N=733)$

Primary Findings

Regardless of course (algebra- or calculus-based),
campus (Tempe or Poly), or semester (Spring or Fall):

- Difficulties with hasic mathematical anerations are widespread; average error rates range from 20-70\%
- Performance on problems using symbols for constants is significantly worse than on problems using numbers;

During problem-solving interviews, students self-correct approximately 50\% of errors following minimal prompts;

Algebra, numeric vs. symbolic

Calculus-based course, first semester (Tempe); Solve for x : \% correct responses:

$$
\begin{array}{llll}
78.4-y=8 x & \text { Fall 2018: } & \text { 75\% } & (N=146) \\
0.5 y=2 x & \text { Spring 2018: } & 83 \% & (N=897)
\end{array}
$$

$$
\begin{aligned}
& c y=d x \\
& a-y=b x
\end{aligned}
$$

Fall 2018:
Spring 2018:

47\% $\quad(N=129)$
63\% $\quad(N=733)$

Primary Findings

Regardless of course (algebra- or calculus-based),
campus (Tempe or Poly), or semester (Spring or Fall):

- Difriculties with basic mat'nematical operations are widespread; average error rates range from 20-70\%;
- Performance on problems using symbols for constants is sianificantly worse than on problems using numbers;
- During problem-solving interviews, students self-correct approximately 50% of errors following minimal prompts;

Student Self-Correction of Errors

Our Interview Findings: Almost half of students' errors on algebra problems were self-corrected by students during interviews, as a consequence of interviewer prompts or unprompted auto-correction.

Prompts Leading to Self-Correction

- "Explain that step"
- "Clarify what you mean."
- "What does the problem ask you to do?"
- [No specific prompt: Students asked to explain all work]

Interview Results: $N=53$

$$
\begin{aligned}
& 3 x=2 y \\
& 5 x+y=26
\end{aligned}
$$

What are the values of x and y ? Show all your steps. For example, $x=2, y=5$ (These are NOT the correct answers).
Correct: 83\%
Error, Self-corrected: 9\%
Error, Uncorrected: 8\%

Interview Results: $N=53$

```
x cos (20') = y cos (70 )
x cos (70')+y cos (20')= 10
```

What are the values of x and y ? Show all your steps. Note: The value for x should NOT include y, and the value for y should NOT include x.

Interview Results: $N=53$

$$
\begin{aligned}
& a x=b y \\
& b x+a y=c
\end{aligned}
$$

a, b, and c are constants.
What are the values of x and y in terms of a, b, and c ? Show all your steps. Note: The value for x should NOT include y, and the value for y should NOT include x.

Correct:

 Error, Self-corrected: 21\%Error, Uncorrected:

55\%

25\%

Summary: Implications for Instruction

- Difficulties due to skill-practice deficits might be addressed by short-term, in- and out-of-class tutorials and assignments, designed to refresh students' previously learned knowledge and skills (e.g., Mikula and Heckler, 2017)
- Difficulties due to "carelessness" might be addressed by guiding students to (1) carefully check and re-check key steps in their calculation; (2) slow down, review problem statements, and re-solve when possible

From Torigoe and Gladding (2011):

Fig. 7. Diagram for question 10.
Question 10 (numeric). A uniform disk of mass $M=8 \mathrm{~kg}$ and radius $R=0.5 \mathrm{~m}$ has a string wound around its rim. The disk is free to spin about a pin through the center of the disk. A mass $M=8 \mathrm{~kg}$ (same mass as the disk) is connected to the string and is dropped from rest. What is the acceleration a of the block? (See Fig. 7.)

From Torigoe and Gladding (2011):

Fig. 7. Diagram for question 10.
Question 10 (numeric). A uniform disk of mass $M=8 \mathrm{~kg}$ and radius $R=0.5 \mathrm{~m}$ has a string wound around its rim. The disk is free to spin about a pin through the center of the disk. A mass $M=8 \mathrm{~kg}$ (same mass as the disk) is connected to the string and is dropped from rest. What is the acceleration a of the block? (See Fig. 7.)

Why the Difficulties with Symbols? Some Suggestions Arising from the Interviews

- In elementary math courses, "simplified forms" of equations are emphasized (i.e., few messy symbols and functions).
- Many students get "overloaded" by seeing all the variables, and are unable to carry out procedures that they do successfully with numbers.
- Many students have had insufficient practice with algebraic operations to avoid being overwhelmed by standard algebraic manipulations.
- Students tend to become careless

