Realistic Assessment of Students' Mathematical Preparation in Introductory Physics Courses

David E. Meltzer,¹ Dakota H. King,² and John D. Byrd^{1,3}

¹Arizona State University ²Arizona State University (present address) and National Heart, Lung, and Blood Institute, National Institutes of Health ³Michigan State University (present address)

Supported in part by NSF DUE #1504986 and #1914712

Overview

We have given diagnostic pretests covering pre-college mathematics to over 7000 introductory physics students:

- Results from five campuses at four different state universities were consistent
- Results on an online version are consistent with those on the written version
- High and low scores on the diagnostic are somewhat predictive of course grades

Examples of Test Items

Find Unknown Angle

What is the value of θ ?

Find Slope of Graph

What is the slope of the graph below?

Time (s)

Find Area

Simultaneous Equations, Symbolic Coefficients

$$cy = dx$$

 $a - y = bx$
 $x = ?$

High consistency of results among five campuses at four different universities (three campuses shown below) suggests findings are generalizable

Correct-response rates: algebra-based course

Students show weakness with units and graphing

 Many students ignored graph-axis labels, and provided no or incorrect units for area and velocity.

raphing

What is the slope of the graph below?

Position (m)

Most common error: Counting grid squares and ignoring numbers on axes

	N	Numerically correct
ASU-Polytechnic	250	57%
ASU-Tempe	1086	76%

	Ν	Numerically correct	Correct with correct
ASU-Polytechnic	250	57%	29%
ASU-Tempe	1086	76%	45%

units

On-line Version

$$egin{array}{cccc} -\lambda & & & \lambda \ & & & \lambda \ & & & -\eta \ +\lambda & & & {
m J.} \ rac{\omega-\eta+\lambda}{\gamma} \end{array}$$

)°	J.	27°
5°	К.	3/6
)°	L.	0.524

What is the slope of the graph below?

A. $\frac{1}{3}$ m/s because the object moves 1 meter in 3 seconds.

- B. $\frac{1}{3}$ m/s because the line rises 1 box while it goes 3 boxes in the horizontal direction.
- C. $\frac{2}{3}$ m/s because the object moves 2 meters in 3 seconds.
- D. $\frac{2}{3}$ m/s because the line rises 2 boxes while it goes 3 boxes in the horizontal direction.

(There may be more than one correct answer, but please select only ONE answer.)

$$\frac{a/b}{c^2/d} = ?$$

$$\text{A.} \ \frac{ac^2}{bd} \quad \text{B.} \ \frac{ad}{bc^2} \quad \text{C.} \ \frac{bd}{ac^2} \quad \text{D.} \ \frac{bc^2}{ad}$$

(There may be more than one correct answer, but please select only ONE answer.)

$$\left(\frac{a}{3}\right)^3 = ?$$

A. $\frac{a^3}{3}$ B. $\frac{a}{27}$ C. $\frac{a^3}{27}$

(There may be more than one correct answer, but please select only ONE answer.)

 $2\left(\frac{a}{b}\right) = ?$ A. $\frac{2a}{b}$ B. $\frac{2a}{2b}$ C. $\frac{a}{2b}$

(There may be more than one correct answer, but please select only ONE answer.)

$$2\left(\frac{3}{4}\right) = ?$$

A. $\frac{6}{8}$ B. $\frac{12}{8}$ C. $\frac{3}{8}$ D. $\frac{3}{2}$ E. $\frac{3}{4}$

(There may be more than one correct answer, but please select only ONE answer.)

Ban				6 cm	Solve for $\frac{3}{2} = 7x$	or x.	21
(a) Area of the circle = $?$		(b) Area of the tri	angle = ?		A. $-\frac{1}{3}$	B. $\frac{1}{14}$	C. $-\frac{1}{2}$
A. $8\pi \text{ cm}^3$ F. $8\pi \text{ cm}^2$ B. $16\pi \text{ cm}^3$ G. $16\pi \text{ cm}^2$ C. $32\pi \text{ cm}^3$ H. $32\pi \text{ cm}^2$ D. $64\pi \text{ cm}^3$ I. $64\pi \text{ cm}^2$ E. $128\pi \text{ cm}^3$ J. $128\pi \text{ cm}^2$	 K. 8π cm L. 16π cm M. 32π cm N. 64π cm O. 128π cm 	 A. 4.5 cm³ B. 9 cm³ C. 12 cm³ D. 18 cm³ E. 36 cm³ 	 F. 4.5 cm² G. 9 cm² H. 12 cm² I. 18 cm² J. 36 cm² 	K. 4.5 cm L. 9 cm M. 12 cm N. 18 cm O. 36 cm	(There may	/ be more thar	i one correct
(There may be more than one correct answer, but pleas	e select only ONE answer.)	(There may be more th	an one correct answer, but p	lease select only ONE answ	ver.)		
$egin{aligned} v^2 &= v_0^2 + 2ad\ v_0 &= 0\ a &= rac{\Delta v}{\Delta t} \end{aligned}$				cy = dx $a - y = bx$			
$\Delta v = 60$				x = ?			
$\Delta t = 8$ v = 30				A. $\frac{ac}{d+b}$	C. $\frac{ac}{bc-d}$	E. $\frac{ac}{db}$	G. – b
d = ?				B. $\frac{ac}{d-b}$	D. $\frac{ac}{bc+d}$	F. $\frac{a}{db}$	H. \overline{b}
A. $d = 30$ B. $d = 60$ C.	d = 120 D. $d =$	= 240 E. $d = -$	480	(There may be m	ore than one cor	ect answer	, but pleas

(There may be more than one correct answer, but please select only ONE answer.)

D.
$$\frac{21}{14}$$

ct answer, but please select only ONE answer.)

$$\frac{a}{b+\frac{d}{c}} \qquad \text{I. } \frac{1}{b}\left(a-\frac{d}{c}\right)$$
$$\frac{a}{b+d} \qquad \text{J. } \frac{c}{d}\left(a-b\right)$$

se select only ONE answer.)

On-line and written versions yield consistent results

ASU Tempe PHY121 Averages

Correct-response rate

written

online

What is the slope of the graph below?

Time (s)

- A. $\frac{1}{2}$ m/s because the object moves 1 meter in 3 seconds.
- B. $\frac{1}{3}$ m/s because the line rises 1 box while it goes 3 boxes in the horizontal direction.
- C. $\frac{2}{3}$ m/s because the object moves 2 meters in 3 seconds.
- D. $\frac{2}{2}$ m/s because the line rises 2 boxes while it goes 3 boxes in the horizontal direction.

Most common error: Counting grid squares and ignoring numbers on axes

On-line Version:

(a) Area of the circle = ?

A. 8π cm	F. $8\pi \text{ cm}^2$	K. $8\pi \text{ cm}^3$
B. 16π cm	G. $16\pi \text{ cm}^2$	L. $16\pi \text{ cm}^3$
C. 32π cm	H. 32π cm ²	M. 32π cm ³
D. 64π cm	I. 64π cm ²	N. 64π cm ³
E. 128π cm	J. 128π cm ²	O. 128π cm ³

20% did *not* choose cm² (*N* = 1252)

(a) Area of the circle = ?

A 9- 0100	$\mathbf{F} = \mathbf{P} - \mathbf{a} \mathbf{r} \mathbf{a}^2$	$\mathbf{V} = \mathbf{P} - \mathbf{a} \mathbf{r} \mathbf{a}^3$
A. $\delta\pi$ cm	Γ. <u>8π cm</u> -	\mathbf{K} . $\mathbf{\delta}\pi$ cm ²
B. 16π cm	G. $16\pi \text{ cm}^2$	L. 16 π cm ³
C. 32π cm	H. 32π cm ²	M. 32π cm ³
D. 64π cm	I. 64π cm ²	N. 64π cm ³
E. 128 π cm	J. 128π cm ²	O. 128π cm ³

Calculus-based Course, ASU-Tempe (*N* = 430) *G*: 68% *B*: 10% *L*: 2% *Other*: 20%

Symbolic notation degrades student performance

Use of symbols to replace numbers in otherwise identical • algebraic equations lowered correct-response rates by $\approx 25\%$.

Algebra: Simultaneous Equations (calculus-based course)

$$\begin{array}{l} 0.5y = 2x \\ 78.4 - y = 8x \end{array} \qquad [Solve for x] \qquad \text{Numeric Version} \quad 79\% \text{ correct} \end{array}$$

ct (*N* = 1043)

Algebra: Simultaneous Equations (calculus-based course)

$$\begin{array}{l} 0.5y = 2x \\ 78.4 - y = 8x \end{array} \qquad [Solve for x] \qquad \text{Numeric Version} \quad 79\% \text{ correct} \end{array}$$

$$\begin{vmatrix} cy = dx \\ a - y = bx \end{vmatrix}$$
 [Solve for x] Symbolic Version 55% correction

ourse) ct (*N* = 1043) ect (*N* = 862)

Findings from >70 Interviews: Students make many "careless" errors

During interviews, students tended to self-correct approximately ullet60% of their initial errors, suggesting many errors are "careless."

Even single test items are highly predictive

• Performance on **one single diagnostic item** can accurately predict class-average score on full 13-item diagnostic

Example: [#18]

18.
$$cy = dx$$

 $a - y = bx$
 $x = ?$

Implication: It may be possible to diagnose the level of students' difficulties with only one or very few mathematics pretest items.

Scores on 3-item Subset: **Relation to High Course Grades**

• Can performance on a **3-item subset** predict final course grade?

Example:

[#3, #11, #12]

Solve for x.

$$\frac{3}{2} = 7x$$

A. $\frac{14}{3}$ B. $\frac{3}{14}$ C. $\frac{21}{2}$ D. $\frac{21}{14}$

(There may be more than one correct answer, but please select only ONE answer.)

(There may be more than one correct answer, but please select only ONE answer.)

B. $\frac{ad}{bc^2}$ C. $\frac{bd}{ac^2}$ D. $\frac{bc^2}{ad}$

A. $\frac{ac^2}{bd}$

#12

High Course Grade vs. Subset Score

Course	Campus	Ν	% grade ≥ B+ overall
Alg-1	ASU-P	78	49%

High Course Grade vs. Subset Score

Course	Campus	N	% grade ≥ B+ overall	% grade ≥ B+ 3/3	% grade ≥ B+ 0/3 or 1/3	Hig 3/3 sco
Alg-1	ASU-P	78	49%	68%	37%	

gh-grade Ratio Fore vs. 0/3 or 1/3 score

1.8

High Course Grade vs. Subset Score

Course	Campus	N	% grade ≥ B+ overall	% grade ≥ B+ 3/3	% grade ≥ B+ 0/3 or 1/3	High-grade Ratio 3/3 score vs. 0/3 or 1/3 score
Alg-1	ASU-P	78	49%	68%	37%	1.8
Alg-2	ASU-P	72	44%	54%	30%	1.8
Alg-2	ASU-T	129	74%	75%	68%	1.1
*Calc-1	UWF	103	32%	53%	4%	13.3
Calc-2	UWF	59	58%	70%	56%	1.3

*subset optimized for this course

Alg-1: Algebra-based course, first semester Alg-2: Algebra-based course, second semester Calc-1: Calculus-based course, first semester Calc-2: Calculus-based course, second semester

ASU-P: Arizona State University, Polytechnic campus ASU-T: Arizona State University, Tempe campus UWF: University of West Florida

Relation Between Scores and Grades

• Performance on **full online diagnostic** can *approximately* predict final course grade

Course	Campus	Ν	% grade ≥ A- overall	% grade ≥ A- score ≥ 81%	% grade ≥ A- score ≤ 57%	Hig score
Alg-1	ASU-P	78	35%	63%	15%	

gh-grade Ratio e ≥ 81% vs. score ≤ 57%

4.2

Course	Campus	Ν	% grade ≥ A- overall	% grade ≥ A- score ≥ 81%	% grade ≥ A- score ≤ 57%	High-grade Ratio score ≥ 81% vs. score ≤ 57%
Alg-1	ASU-P	78	35%	63%	15%	4.2
Alg-2	ASU-P	72	39%	64%	25%	2.6
Alg-2	ASU-T	129	60%	67%	55%	1.2
Calc-1	UWF	103	22%	40%	0%	"∞"
Calc-2	UWF	59	49%	61%	38%	1.6

Alg-1: Algebra-based course, first semester Alg-2: Algebra-based course, second semester Calc-1: Calculus-based course, first semester Calc-2: Calculus-based course, second semester

ASU-P: Arizona State University, Polytechnic campus ASU-T: Arizona State University, Tempe campus UWF: University of West Florida

Students who scored high on math diagnostic pretest had more "A" course grades than those who scored low

overallscore $\geq 81\%$ score $\leq 57\%$ score	Course	Campus	N	% grade ≤ B- overall	% grade ≤ B- score ≥ 81%	% grade ≤ B- score ≤ 57%	Lov score
--	--------	--------	---	-------------------------	-----------------------------	-----------------------------	--------------

w-grade Ratio ≤ 57% vs. score ≥ 81%

Course	Campus	Ν	% grade ≤ B- overall
Alg-1	ASU-P	78	25%
Alg-2	ASU-P	72	33%

Alg-1: Algebra-based course, first semester Alg-2: Algebra-based course, second semester Calc-1: Calculus-based course, first semester Calc-2: Calculus-based course, second semester

ASU-P: Arizona State University, Polytechnic campus ASU-T: Arizona State University, Tempe campus UWF: University of West Florida

Students who scored low on math diagnostic pretest had more "C" course grades than those who scored high

Course	Campus	N	% grade ≤ B- overall	% grade ≤ B- score ≥ 81%	% grade ≤ B- score ≤ 57%	Lo score
Alg-1	ASU-P	78	25%			
Alg-2	ASU-P	72	33%			

Alg-1: Algebra-based course, first semester Alg-2: Algebra-based course, second semester Calc-1: Calculus-based course, first semester Calc-2: Calculus-based course, second semester

ASU-P: Arizona State University, Polytechnic campus ASU-T: Arizona State University, Tempe campus UWF: University of West Florida Students who scored low on math diagnostic pretest had more "C" course grades than those who scored high

w-grade Ratio ≤ 57% vs. score ≥ 81%

Course	Campus	Ν	% grade ≤ B- overall	% grade ≤ B- score ≥ 81%	% grade ≤ B- score ≤ 57%	Low-grade Ratio score ≤ 57% vs. score ≥ 81%
Alg-1	ASU-P	78	25%	19%	38%	2.1
Alg-2	ASU-P	72	33%	14%	32%	2.3

Alg-1: Algebra-based course, first semester Alg-2: Algebra-based course, second semester Calc-1: Calculus-based course, first semester Calc-2: Calculus-based course, second semester

ASU-P: Arizona State University, Polytechnic campus ASU-T: Arizona State University, Tempe campus UWF: University of West Florida Students who scored low on math diagnostic pretest had more "C" course grades than those who scored high

Summary

- Instructors should be wary of assumptions about students' mathematics preparation before making assessments
- Pre-instruction performance on a brief mathematics diagnostic may provide indications of students at risk