Realistic Assessment of Students' Mathematical Preparation in Introductory Physics Courses

David E. Meltzer, ${ }^{1}$ Dakota H. King, ${ }^{2}$ and John D. Byrd ${ }^{1,3}$

${ }^{1}$ Arizona State University
${ }^{2}$ Arizona State University (present address) and
National Heart, Lung, and Blood Institute, National Institutes of Health
${ }^{3}$ Michigan State University (present address)

Overview

We have given diagnostic pretests covering pre-college mathematics to over 7000 introductory physics students:

- Results from five campuses at four different state universities were consistent
- Results on an online version are consistent with those on the written version
- High and low scores on the diagnostic are somewhat predictive of course grades

Examples of Test Items

Find Unknown Angle

Find Slope of Graph

What is the slope of the graph below?

Find Area

(b) Area of the triangle $=$

Simultaneous Equations, Symbolic Coefficients

$$
\begin{aligned}
& c y=d x \\
& a-y=b x \\
& x=?
\end{aligned}
$$

High consistency of results among five campuses at four different universities (three campuses shown below) suggests findings are generalizable

Correct-response rates: algebra-based course

Students show weakness with units and graphing

- Many students ignored graph-axis labels, and provided no or incorrect units for area and velocity.

What is the slope of the graph below?

Time (s)

What is the slope of the graph below? $\begin{aligned} & \text { Correct-response rate }(N>2000) \text { : } \\ & 30-60 \% \text {, nearly independent of course or campus }\end{aligned}$
Position (m)

Time (s)

Position (m)

Time (s)

Most common error: Counting grid squares and ignoring numbers on axes

(a) Area of the circle $=$

(a) Area of the circle $=$

Area of Circle: Algebra- and Calculus-

 based courses combined, 2018

Area of Circle: Algebra- and Calculusbased courses combined, 2018

	N	Numerically correct
ASU-Polytechnic	250	57%
ASU-Tempe	1086	76%

Area of Circle: Algebra- and Calculusbased courses combined, 2018

	\boldsymbol{N}	Numerically correct	Correct with correct units
ASU-Polytechnic	250	57%	29%
ASU-Tempe	1086	76%	45%

On-line Version

What is the length of side x ?

A. $y \cos \left(z^{\circ}\right)$
B. $y \sin \left(z^{\circ}\right)$
C. $y \tan \left(z^{\circ}\right)$
D. $y / \cos \left(z^{\circ}\right)$
E. $y / \sin \left(z^{\circ}\right)$
F. $y / \tan \left(z^{\circ}\right)$
G. $\cos \left(z^{\circ}\right) / y$
H. $\sin \left(z^{\circ}\right) / y$
I. $\tan \left(z^{\circ}\right) / y$
J. $\sqrt{y^{2}+z^{2}}$
K. $\sqrt{z^{2}-y^{2}}$
L. y / z
(There may be more than one correct answer, but please select only ONE answer.)
$\cos \left(0^{\circ}\right)=?$
A. $0 \quad$ B. 1
C. undefined
D. 0.707
E. 0.894
(There may be more than one correct answer, but please select only ONE answer.)

$$
\sin \left(90^{\circ}\right)=?
$$

A. $0 \quad$ B. 1
C. undefined
D. 0.707
E. 0.894
(There may be more than one correct answer, but please select only ONE answer.)
$\tan \left(0^{\circ}\right)=?$
A. 0 B. 1
C. undefined
D. 0.707
E. 0.894
(There may be more than one correct answer, but please select only ONE answer.)

What is the value of θ ?

A. $\cos (3 / 6)$
D. $\cos ^{-1}(3 / 6)$
G. 30°
J. 27°
B. $\sin (3 / 6)$
E. $\sin ^{-1}(3 / 6)$
H. 45°
K. 3/6
C. $\tan (3 / 6)$
F. $\tan ^{-1}(3 / 6)$
I. 60°
L. 0.524
(There may be more than one correct answer, but please select only ONE answer.)

Solve for θ.

$$
\gamma \theta+\eta=\lambda \theta+\omega
$$

A. $\frac{\eta+\omega}{\gamma-\lambda}$
B. $\frac{\eta-\omega}{\lambda-\gamma}$
C. $\frac{\gamma-\lambda}{\omega-\eta}$
D. $\frac{\lambda-\gamma}{\eta-\omega}$
E. $\frac{\eta-\omega}{\gamma \lambda}$
F. $\frac{\omega-\eta}{\gamma \lambda}$
G. $\frac{\omega-\eta}{\gamma-\lambda}$
H. $\frac{\omega-\eta}{\gamma+\lambda}$
I. $\frac{\boldsymbol{\eta}-\boldsymbol{\omega}+\gamma}{\lambda}$
J. $\frac{\omega-\eta+\lambda}{\gamma}$
(There may be more than one correct answer, but please select only ONE answer.)

What is the slope of the graph below?
Position (m)

$$
\left(\frac{a}{3}\right)^{3}=?
$$

A. $\frac{a^{3}}{3}$
B. $\frac{a}{27}$
C. $\frac{a^{3}}{27}$

Time (s)
A. $\frac{1}{3} \mathrm{~m} / \mathrm{s}$ because the object moves 1 meter in 3 seconds.
B. $\frac{1}{3} \mathrm{~m} / \mathrm{s}$ because the line rises 1 box while it goes 3 boxes in the hori-
C. $\frac{2}{3} \mathrm{~m} / \mathrm{s}$ because the object moves 2 meters in 3 seconds.
D. $\frac{2}{3} \mathrm{~m} / \mathrm{s}$ because the line rises 2 boxes while it goes 3 boxes in the
horizontal direction. There may be more than one correct answer, but please select only ONE answer.)
$\frac{a / b}{c^{2} / d}=?$
A. $\frac{a c^{2}}{b d}$
B. $\frac{a d}{b c^{2}}$
C. $\frac{b d}{a c^{2}}$
D. $\frac{b c^{2}}{a d}$
(There may be more than one correct answer, but please select only ONE answer.)
(There may be more than one correct answer, but please select only ONE answer.)

$$
2\left(\frac{a}{b}\right)=?
$$

A. $\frac{2 a}{b}$
B. $\frac{2 a}{2 b}$
C. $\frac{a}{2 b}$
(There may be more than one correct answer, but please select only ONE answer.)

$$
2\left(\frac{3}{4}\right)=?
$$

A. $\frac{6}{8}$
B. $\frac{12}{8}$
C. $\frac{3}{8}$
D. $\frac{3}{2}$
E. $\frac{3}{4}$
(There may be more than one correct answer, but please select only ONE answer.)

(a) Area of the circle $=$?

A. $8 \pi \mathrm{~cm}^{3}$	F. $8 \pi \mathrm{~cm}^{2}$	K. $8 \pi \mathrm{~cm}$
B. $16 \pi \mathrm{~cm}^{3}$	G. $16 \pi \mathrm{~cm}^{2}$	L. $16 \pi \mathrm{~cm}$
C. $32 \pi \mathrm{~cm}^{3}$	H. $32 \pi \mathrm{~cm}^{2}$	M. $32 \pi \mathrm{~cm}$
D. $64 \pi \mathrm{~cm}^{3}$	I. $64 \pi \mathrm{~cm}^{2}$	N. $64 \pi \mathrm{~cm}$
E. $128 \pi \mathrm{~cm}^{3}$	J. $128 \pi \mathrm{~cm}^{2}$	O. $128 \pi \mathrm{~cm}$

(b) Area of the triangle = ?

A. $4.5 \mathrm{~cm}^{3}$	F. $4.5 \mathrm{~cm}^{2}$	K. 4.5 cm
B. $9 \mathrm{~cm}^{3}$	G. $9 \mathrm{~cm}^{2}$	L. 9 cm
C. $12 \mathrm{~cm}^{3}$	H. $12 \mathrm{~cm}^{2}$	M. 12 cm
D. $18 \mathrm{~cm}^{3}$	I. $18 \mathrm{~cm}^{2}$	N. 18 cm
E. $36 \mathrm{~cm}^{3}$	J. $36 \mathrm{~cm}^{2}$	O. 36 cm

Solve for x .
$\frac{3}{2}=7 x$
A. $\frac{14}{3}$
B. $\frac{3}{14}$
C. $\frac{21}{2}$
D. $\frac{21}{14}$

There may be more than one correct answer, but please select only ONE answer.)
(There may be more than one correct answer, but please select only ONE answer.)
${ }^{(T h}$
$v^{2}=v_{0}^{2}+2 a d$
$v_{0}=0$
$a=\frac{\Delta v}{\Delta t}$
$\Delta v=60$
$\Delta t=8$
$v=30$
$d=?$
$\begin{array}{lllll}\text { A. } d=30 & \text { B. } d=60 & \text { C. } d=120 & \text { D. } d=240 & \text { E. } d=480\end{array}$
(There may be more than one correct answer, but please select only ONE answer.)
$c y=d x$
$a-y=b x$
$x=$?
A. $\frac{a c}{d+b}$
B. $\frac{a c}{d-b}$
C. $\frac{a c}{b c-d}$
D. $\frac{a c}{b c+d}$
E. $\frac{a c}{d b}$
F. $\frac{a}{d b}$
G. $\frac{a}{b+\frac{d}{c}}$
H. $\frac{a}{b+d}$
I. $\frac{1}{b}\left(a-\frac{d}{c}\right)$
J. $\frac{c}{d}(a-b)$
(There may be more than one correct answer, but please select only ONE answer.)

On-line and written versions yield consistent results
 ASU Tempe PHY121 Averages
 \square written
 \square online

What is the slope of the graph below?

Position (m)

$$
N=2556
$$

Numerically correct (C or D): 59\%
Actually correct (C): 48\%
Consistent with results on written version

Time (s)

A. $\frac{1}{3} \mathrm{~m} / \mathrm{s}$ because the object moves 1 meter in 3 seconds.
B. $\frac{1}{3} \mathrm{~m} / \mathrm{s}$ because the line rises 1 box while it goes 3 boxes in the hori-
zontal direction.
C. $\frac{2}{3} \mathrm{~m} / \mathrm{s}$ because the object moves 2 meters in 3 seconds.
D. $\frac{2}{3} \mathrm{~m} / \mathrm{s}$ because the line rises 2 boxes while it goes 3 boxes in the horizontal direction.

Most common error: Counting grid squares and ignoring numbers on axes

On-line Version:

(a) Area of the circle =?
A. $8 \pi \mathrm{~cm}$
B. $16 \pi \mathrm{~cm}$
C. $32 \pi \mathrm{~cm}$
D. $64 \pi \mathrm{~cm}$
E. $128 \pi \mathrm{~cm}$
F. $8 \pi \mathrm{~cm}^{2}$
G. $16 \pi \mathrm{~cm}^{2}$
H. $32 \pi \mathrm{~cm}^{2}$
I. $64 \pi \mathrm{~cm}^{2}$
J. $128 \pi \mathrm{~cm}^{2}$
K. $8 \pi \mathrm{~cm}^{3}$
L. $16 \pi \mathrm{~cm}^{3}$
M. $32 \pi \mathrm{~cm}^{3}$
N. $64 \pi \mathrm{~cm}^{3}$
O. $128 \pi \mathrm{~cm}^{3}$

20\% did not choose cm^{2}

$$
(N=1252)
$$

(a) Area of the circle =?
A. $8 \pi \mathrm{~cm}$
B. $16 \pi \mathrm{~cm}$
C. $32 \pi \mathrm{~cm}$
D. $64 \pi \mathrm{~cm}$
E. $128 \pi \mathrm{~cm}$
F. $8 \pi \mathrm{~cm}^{2}$
G. $16 \pi \mathrm{~cm}^{2}$
H. $32 \pi \mathrm{~cm}^{2}$
I. $64 \pi \mathrm{~cm}^{2}$
J. $128 \pi \mathrm{~cm}^{2}$
K. $8 \pi \mathrm{~cm}^{3}$
L. $16 \pi \mathrm{~cm}^{3}$
M. $32 \pi \mathrm{~cm}^{3}$
N. $64 \pi \mathrm{~cm}^{3}$
O. $128 \pi \mathrm{~cm}^{3}$

Calculus-based Course, ASU-Tempe ($\mathrm{N}=430$)

G: 68\%
B: 10%
L: 2\%
Other: 20\%

Symbolic notation degrades student performance

- Use of symbols to replace numbers in otherwise identical algebraic equations lowered correct-response rates by $\approx 25 \%$.

Algebra: Simultaneous Equations (calculus-based course)

$$
\begin{aligned}
& 0.5 y=2 x \quad[\text { Solve for } x] \quad \text { Numeric Version } 79 \% \text { correct }(N=1043) \\
& 78.4-y=8 x \quad(N)
\end{aligned}
$$

Algebra: Simultaneous Equations (calculus-based course)

$$
\begin{aligned}
& 0.5 y=2 x \\
& 78.4-y=8 x \quad[\text { Solve for } x] \quad \text { Numeric Version } 79 \% \text { correct }(N=1043)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
c y=d x \\
a-y=b x
\end{array} \quad[\text { Solve for } x] \quad \text { Symbolic Version } 55 \% \text { correct }(N=862) \\
& \hline
\end{aligned}
$$

Findings from >70 Interviews:

Students make many "careless" errors

- During interviews, students tended to self-correct approximately 60% of their initial errors, suggesting many errors are "careless."

Even single test items are highly predictive

- Performance on one single diagnostic item can accurately predict class-average score on full 13-item diagnostic

Example:
[\#18]

$$
\begin{aligned}
& \text { 18. } c y=d x \\
& a-y=b x \\
& x=\text { ? }
\end{aligned}
$$

Implication: It may be possible to diagnose the level of students' difficulties with only one or very few mathematics pretest items.

Scores on 3-item Subset: Relation to High Course Grades

- Can performance on a 3-item subset predict final course grade?

Example:
[\#3, \#11, \#12]

$\frac{a / b}{c^{2} / d}=?$
A. $\frac{a c^{2}}{b d}$
B. $\frac{a d}{b c^{2}}$
C. $\frac{b d}{a c^{2}} \quad$ D. $\frac{b c^{2}}{a d} \quad$ \#11
Solve for x.
$\frac{3}{2}=7 x$
A. $\frac{14}{3}$
B. $\frac{3}{14}$
C12 $\frac{21}{2}$
D. $\frac{21}{14}$
(There may be more than one correct answer, but please select only ONE answer.)
(There may be more than one correct answer, but please select only ONE answer.)

High Course Grade vs. Subset Score

Course	Campus	N	\% grade \geq B+ overall
Alg-1	ASU-P	78	49%

High Course Grade vs. Subset Score

Course	Campus	\boldsymbol{N}	\% grade \geq B+ overall	\% grade $\geq \mathbf{B +}$ $3 / 3$	\% grade \geq B+ $\mathbf{0 / 3}$ or $1 / 3$	High-grade Ratio 3/3 score vs. $0 / 3$ or $1 / 3$ score
Alg-1	ASU-P	78	49%	68%	37%	1.8

High Course Grade vs. Subset Score

Course	Campus	\boldsymbol{N}	\% grade $\mathbf{\geq}$ B+ overall	\% grade $\mathbf{\geq} \mathbf{B +}$ $\mathbf{3 / 3}$	\% grade $\mathbf{\geq}$ B+ $\mathbf{0 / 3}$ or $\mathbf{1 / 3}$	High-grade Ratio 3/3 score vs. $\mathbf{0} / 3$ or 1/3 score
Alg-1	ASU-P	78	49%	68%	37%	1.8
Alg-2	ASU-P	72	44%	54%	30%	1.8
Alg-2	ASU-T	129	74%	75%	68%	1.1
*Calc-1	UWF	103	32%	53%	4%	13.3
Calc-2	UWF	59	58%	70%	56%	1.3

*subset optimized for this course
Alg-1: Algebra-based course, first semester Alg-2: Algebra-based course, second semester Calc-1: Calculus-based course, first semester
Calc-2: Calculus-based course, second semester
ASU-P: Arizona State University, Polytechnic campus ASU-T: Arizona State University, Tempe campus UWF: University of West Florida

Relation Between Scores and Grades

- Performance on full online diagnostic can approximately predict final course grade

High Course Grade vs. Full Diagnostic Score

Course	Campus	\boldsymbol{N}	\% grade \geq A- overall	\% grade \geq A- score $\geq \mathbf{8 1 \%}$	\% grade \geq A- score $\leq 57 \%$	High-grade Ratio score $\geq 81 \%$ vs. score $\leq 57 \%$
Alg-1	ASU-P	78	35%	63%	15%	4.2

High Course Grade vs. Full Diagnostic Score

Course	Campus	\boldsymbol{N}	\% grade \geq A- overall	\% grade \geq A- score $\geq \mathbf{8 1 \%}$	\% grade \geq A- score $\leq 57 \%$	High-grade Ratio score \geq 81\% vs. score $\leq 57 \%$
Alg-1	ASU-P	78	35%	63%	15%	4.2
Alg-2	ASU-P	72	39%	64%	25%	2.6
Alg-2	ASU-T	129	60%	67%	55%	1.2
Calc-1	UWF	103	22%	40%	0%	"
Calc-2	UWF	59	49%	61%	38%	1.6

Alg-1: Algebra-based course, first semester Alg-2: Algebra-based course, second semester Calc-1: Calculus-based course, first semester Calc-2: Calculus-based course, second semester

ASU-P: Arizona State University, Polytechnic campus ASU-T: Arizona State University, Tempe campus UWF: University of West Florida

Students who scored high on math diagnostic pretest had more "A" course grades than those who scored low

Low Course Grade vs. Full Diagnostic Score

Course	Campus	N	\% grade \leq B- overall	\% grade \leq B- score $\geq 81 \%$	\% grade \leq B- score $\leq 57 \%$	Low-grade Ratio score $\leq 57 \%$ vs. score $\geq 81 \%$

Low Course Grade vs. Full Diagnostic Score

Course	Campus	N	\% grade overall
Alg-1	ASU-P	78	25%
Alg-2	ASU-P	72	33%

Alg-1: Algebra-based course, first semester Alg-2: Algebra-based course, second semester Calc-1: Calculus-based course, first semester Calc-2: Calculus-based course, second semester

ASU-P: Arizona State University, Polytechnic campus
Students who scored low on math diagnostic pretest had more "C" course grades than those who scored high

Low Course Grade vs. Full Diagnostic Score

Course	Campus	N	\% grade \leq B- overall	\% grade \leq B- score $\geq 81 \%$	\% grade \leq B- score $\leq 57 \%$	Low-grade Ratio score $\leq 57 \%$ vs. score $\geq 81 \%$
Alg-1	ASU-P	78	25%			
Alg-2	ASU-P	72	33%			

Alg-1: Algebra-based course, first semester Alg-2: Algebra-based course, second semester Calc-1: Calculus-based course, first semester Calc-2: Calculus-based course, second semester

ASU-P: Arizona State University, Polytechnic campus
ASU-T: Arizona State University, Tempe campus UWF: University of West Florida

Students who scored low on math diagnostic pretest had more "C" course grades than those who scored high

Low Course Grade vs. Full Diagnostic Score

Course	Campus	\boldsymbol{N}	\% grade $\mathbf{~}$ overall	\% grade $\mathbf{~}$ score $\geq \mathbf{8 1 \%}$	\% grade \leq B- score $\leq 57 \%$	Low-grade Ratio score $\leq 57 \%$ vs. score $\geq 81 \%$
Alg-1	ASU-P	78	25%	19%	38%	2.1
Alg-2	ASU-P	72	33%	14%	32%	2.3

Alg-1: Algebra-based course, first semester Alg-2: Algebra-based course, second semester Calc-1: Calculus-based course, first semester Calc-2: Calculus-based course, second semester

ASU-P: Arizona State University, Polytechnic campus
ASU-T: Arizona State University, Tempe campus UWF: University of West Florida

Students who scored low on math diagnostic pretest had more "C" course grades than those who scored high

Summary

- Instructors should be wary of assumptions about students' mathematics preparation before making assessments
- Pre-instruction performance on a brief mathematics diagnostic may provide indications of students at risk

